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For unsteady 1D diffusicn—convection probiems, this paper develops
an extensive analysis of two-level three-point finite difference schemes
of order 2 in time and 4 in space. This general class of FDS includes
several schemes independently proposed by different authors. One
main objective is the identification of difference schemes vielding
satisfactory numerical results for strongly convective problems (i.e.,
when the cell Reynolds number a=A4h/2 is greater than unity). The
stability and the oscillatory behaviour of the schemes are carefully
studied and the analyses are completed by some numerical
experiments. We outline some key points; {i} the great difficulty to
obtain accurate numerical results for large values of g; (ii} the
possibility of virtually optimum schemes is essentially theorstical and
requires, in practice, careful experiments; {iil} for strongly convective
problems, some sacond-order explicit schemes are almost as efficient

{and less costly) than implicit fourth-order schemes. © 1994 Academic
Press, Inc.

1. INTRODUCTION

Our previous paper [1, 2] are concerned with two- and
three-level second-order difference schemes (FDS) for the
model diffusion—convection problem (2}

(P) o Bu=02u—A0, u+f=Au+f

in J0, 1[ x[0, T
+ u(x, 0) = uy(x), initial condition
forxe{0, 1]

» y=k;, boundary conditions
for x,=0, 1 and re[0, TT.

These papers outline the importance of an extensive
analysis of the properties of the schemes. Beyond the
fundamental properties, stability and consistency, the
positivity, the numerical dispersion and diffusion must be
precisely analysed so as to obtain accurate numerical
results, ie., these which are neither oscillatory nor
excessively damped; the artificial viscosity and the positivity
of the schemes are of major importance, in particular, for
the most interesting problems, i.e., when the convection
velocity is high: 2> 1. In [1, 2] we considered most of the

(1)
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first- and second-order schemes and in the present paper we
examine higher order schemes (i.e., of order 2 in time and 4
in space) which only need three points in space so as to
avoid difficulties near the boundaries.

Recently, several authors have proposed high order, two-
level, three-point implicit schemes, e.g., Ciment et al. [3],
Dennis and Hudson [4] (compact schemes), Iyengar and
Mittal [ 5], Iyengar, Manohar, and Krishnaiah [6], Noye
[71. The optimal weighted scheme given by Richtmyer and
Morton [8] is also of order (2, 4). One objective of these
works is a satisfactory resolution of linear variable coef-
ficient parabolic equations such as the heat equation in
polar cylindrical coordinates.

The purpose of this paper is the utilization of high order
schemes for the model problem (27} when the convection
velocity is high (without loss of generality, we consider f =0
in the following). With this aim in view, we develop a
general approach which includes, as particular cases, most
of the schemes already proposed in the papers quoted
above, The main characteristic of discrete problems (P,)
associated with (#?) is the cell Reynoids number o = Ah/2.
The value x =1 may be considered as a barrier between
discrete approximations (a < 1) in common use for diffusive
problems and those which require a specific approach
{(x>1). a associates a characteristic of the differential
problem, 4, and the space step k; as already noted in [1, 2],
we will observe some paradox and conflicts between the
asymptotic properties: stability and accuracy, and the
behaviour of effective numerical solutions obtained with
finite values of the steps Az, h.

For the construction of the schemes, our process may be
compared with the classical modified equation technique—
Warming and Hyett [9], Sin Chun Chang [10], Noye
and Tan [ 11], Griffiths and Sanz Serna [ 12] etc. We intend
to define the class of two-level three-point schemes of
order {2, 4),

U"‘+l

n+1 a+1 _ n 3
a_ vty agr T Fayi i =b_ v +bov] + by}, |,

(2)
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and obtain as particular cases the following schemes:

— two schemes given by Manohar er al. [6‘];

— the “third-order” scheme given by Noye [7] (this
scheme is, in fact, of order 4);

— the optimal weighted scheme of Richtmyer and
Morton [8].

Insofar as we consider fourth-order schemes, the numeri-
cal dispersion and diffusion will be significantly reduced (at
least for moderate values of a). Indeed, they depend on the
order of the derivatives appearing in the truncation error or
equivalently, on the order of the amplitude and phase
errors—see Rigal [17. Therefore, obtaining stable numeri-
cal solutions which do not present oscillations is the main
objective of the analysis of the difference schemes.

The presence of non-physical oscillations in the numerical
solutions prevents a consistent and stable difference scheme
from producing satisfactory numerical results. Different
kinds of oscillations may occur—see Siemeniuch and
Gladwell [18]; thus, a fundamental necessary condition is
the positivity of the FDS, i.e.,

for any value of n: V"2 0= V"+1>0.

(This condition is frequently a natural requirement of the
physical model ).

Let us recail that a matrix 4 = [A4,] is positive if all its
entries a;, i=1, nand j= 1, p are positive—this definition is
also valid for vectors (n or p equal to unity). Thus, the
FDS (2) will be positive if A~'B is a positive matrix, 4 and
B being the tridiagonal matrices [a_,, dy,a,] and
[b_1, by, b,], respectively.

Unlike second-order schemes, studied in [17, fourth-
order schemes arc generally not commutative; ie., the
matrices, 4 and B, do not commute and positivity cannot be
easily studied [1, 2, 15].

To discard the FDS which presents roughly oscillatory
solutions we defined non-oscillatory schemes [2] as:

DerNiTion. The FDS(2) is non-oscillatory if the
associated steady scheme

(a_y—b_ )1+ (@—bo)v;+{(a,—b,)v;,, =0 (3}
presents monotone solutions.

An FDS which does not satisfy this property will behave
as the basic FTCS (forward time, centred space) scheme
when o>t This property, which does not imply the
positivity of the scheme, is necessary to obtain satisfactory
numerical results over fairly large time intervals. The study
of the positivity of the FDS from properties of A and B will
be detailed in the next section after the analysis of the
fundamental properties, stability and accuracy.

2. CONSTRUCTION AND PROPERTIES OF GENERAL
FOURTH-ORDER SCHEMES

We begin with two lemmas relative to two-level three-
point schemes (2). We suppose that

which is always satisfied (after a possible normalization of
the coefficients) by consistent schemes,

LeMMA 1. The FDS(2) is stable if and only if the coef-
ficients a;, b; satisfy

(ay~a_ Y’ —(b;—b_\Y>a,+a_1—b,~b_,

4

(ai+a_\Y¥—(b +b_\)?>a,+a_,—b—b_,. (5)

Proof. The amplification factor associated with (2) is
given by
(0) = bo+(by+b_)cosep+ilb,—b_,)sineg
£ ay+(a;+a_,)cos o+ i(a, —a_,)sin ¢’
lole [0, x].

Taking its modulus, we obtain

lg(@))2=1 —(K1 sin2§+ K, sin® %)/D

with D >0 and

Ki=4{ai—a_,) ~a,—a_,+5 +h_y—(by—b_,)]
K2= 16(aja~1—b1b__~|).

The modulus of g will be bounded by unity if

Ki+K, Y20 (6)
when Y =sin?(¢/2) describes the interval [0, 11.
The condition (6} will be satisfied if and only if
K120, K1+K2;0’ (7)

which yields conditions (4) and (5).

LEMMA 2. The FDS(2) is non-oscillatory if the coef-
ficients a;, b; satisfy
(a—b)a_,—b_)=0 (3)

Proof. The associated steady scheme (3),

(a,—b) v+ (@o—bo)v;+{a_y—~b_y)v;_, =0,
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is a second-order homogeneous recurrent sequence which
will present monotone solutions if the roots of its charac-
teristic equation are real and positive. We may easily verify
that the roots are real (recall that ' a,=3' | b;=1)and
evidently positive when (8) is satisfied.

With the basic difference operators,

a4+l n ” .|
DUH_Uj Uj D Un_vf"‘l vj_l
;= ol =
i ar ! 2
(9)
[ n n n
p.pner1— Y D pre Yt
+Yi h ' —-5i h 4

we define a general two-level three-point scheme (P,,),

()
(1+C)Dv}=(3+A4)D,D_v]+(3+4;) D, D_v]*!
— M5+ B,) Dovt — A3+ By) Dou v,
{10)

where A4;, B;, C are real constants which must be chosen so
as to eliminate lower order terms in the truncation error.
When these constants are equal to zero, (P,) becomes the
classical Crank—Nicolson scheme of order (2, 2).

In order to obtain the truncation error, we apply (P,) to
u, a sufficiently smooth solution of (#,), the homogeneous
probiem associated with (2):

E (4t hy=(1+C) Du(x,, t,)
—(3+A) D D _ulx;,t,,,)
—(3+A4)D,D_u(x,t,)
— M3+ By) Dou(x;, t, 1)

— A3+ B,) Doulx;, 1,); (11)

u(x, t) satisfies

O, u+ A0 u=0%u (12)

and higher order equations which are obtained by differen-
tiating Eq. (12). Thus E,{(4¢, h} may be written in terms of
the space derivatives only. In the different Taylor develop-
ments we retain the terms yielding space derivatives of order
up to 6; however, in the coefficients of &2 and 8% u we drop
the terms depending on A¢# and A% with p> 2, g > 4.

By developing each term in (11) we obtain

6
Ef(At, i)=Y e;8u+HOD (higher order derivatives)

=1

with

el=j.(B1+Bz_C) (13.1)

C
92=C—A,—~AZ~JLZA!(BZ~—E) £13.2)

2

h
63511[:AI(A2+BQ—C)+—6_(1+BI+32)

42T
+22—t[—+332-—cﬂ

o |3 (13.3)

C h?
e4=dt(-2-—A2)—-(1+A,+A2]1—2

a1
+Ale(C—5~—A2—ZBz)

1 ,h? At
—(5-&-32)1 3
a7

24

F A (C—4B,— 1) (13.4)

Ar? {
8551[—2—'(2A2+32+E—C)

h4
+1—2'6(1+BI+BZ)

B At (3
+— (- + A4+ 282)]

12 \2 (133)

A ! h
EG——n'z—(C—?’Az—-E)—(I + 4, +A2)3—60

h2 4t /1
“12—(5*"‘2)-

(P,) will be of order (2.4), if 4;, B,, and C are chosen so that
the error terms depending on At and A2 vanish in (13) for
Jj=1,4. There is evidently an infinity of solutions: the
schemes quoted above [6-8) correspond to different
choices which eliminate some other components of the trun-
cation error, In fact it appears that the choice of C only has
a slight influence; however, some schemes already proposed
correspond to non-null values of C.

Now we shall study the general properties of the class of
FDS defined by (10). After that, observing that the schemes
previously proposed in [6-8] belong to this class, we
complete the analysis of the properties of these schemes and
conclude that they are rather poorly efficient for strongly
convective problems (x> 1). Finally, we examine several
choices of the constants 4;, B,, C so as to propose schemes

(13.6)
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which may be considered as optimal. From (13.1)-(13.2) we
observe

TueoreM 1 (Consistency). (1) A4 necessary condition
of consistency of (P,) with () is

C=B, +B,. (14)

(2) (P,) is consistent with a differential problem with a
positive diffusion if the artificial viscosity (characterized by
e,) is less than unity,

These properties are not important because we will only
consider high order schemes, ie., satisfying at least
¢; = ¢, =0. However, a previcus condition must be checked
by (P,); indeed A, B,, C must necessarily be chosen so that
(P, ) does not become a backward diffusive scheme. (P, } will
be a forward diffusive scheme if it satisfies the following
conditions:

(D) 1+C>0,

1+ A4,+4,>0. (15)

Remark. 1If (P,) is formally consistent with a well-posed
parabolic problem (P,} (Theorem 1), conditions (D) seem
paradoxical. Insofar as we principally consider strongly
convective problems (43 1 and a = Ah/2 > 1), the constants
A,, B;, and C may be rather large and modify the charac-
teristics of (#2). Neither 1+ Cor 1 + 4, + A4, are considered
to be negative (which also corresponds to a forward dif-
fusive scheme), since, in this case, (P,) approaches (#?) with
a convective velocity of opposite sign. Actually, this fact
points to a major concern of this paper: the asymptotic
properties—stability and accuracy—which are obtained for
At, k — 0, do not always guarantee that the computed solu-
tions of the schemes will be satisfactory. These difficulties
{evoked in Sectionl) require deeper investigations,
particularly for small but finite values of A—see papers
[1,2,13,14].

From Lemmas 1 and 2, applied to {P,), we deduce the
following fundamental results.

THeOREM 2 (Stability). (P,) is stable if and only if the
coefficients A,, B,, C and the mesh ratios r= At/h?,
p= A At/h verify

(S) WA(B —B)<2r(1+4,+4,),
2r(A1—‘A2)~€.. 1 +C

(16)
(17)

Proof. This is straightforward from Lemmal if we
assume that (P,) satisfies conditions (D). For (P,) the
values of g, b, are given by (in this case Y a,=Y b;=
1+CY):

ap=1+C+r+2rd,, bo=14+C—r—2rd,,

T £ 1B 4 _uB,
a;= 2 rA2+4+ 2 > b1—2+rAi 4 2 ’
r . uB r g uB
a_1=—§—~rA2—Z——2-2-, b_1=§+r.¢41+z+—2—1'.
(18)

TuHeoreM 3. {Non-oscillation). {P,) is non-oscillatory if
the following condition (O} is satisfied:
(O) 1+4,+4,2a(1+C). (19)
This condition is deduced from Lemma 2 with the a,, b, given
by (18) (we suppose that conditions (D) are satisfied).

3. ANALYSIS OF SOME FOURTH-ORDER SCHEMES

The finite difference schemes analyzed in this section have
been introduced independently by different authors. The
construction and the objectives of these schemes are quite
different but they have in common the utilization of two
time levels and of space operators of order at most 2,
yielding an accuracy of order (2,4). They have been
proposed for diffusion problems, so their behaviour for
convection—diffusion problems when the convection
velocity is large must be analysed. With the basic difference
operators given in (9) we define four schemes below:

1. W Scheme

The optimal weighted scheme given by Richtmyer and
Morton [8, p. 188] for the heat equation is adapted to (#°)
as

n+1 n
W) Df—(D, D~ Do) (L51)

2
AR vittoN A .
:—12—D+D_(J 2 )+ 12 Dl‘DDUj
w A
—(E+T4I) D.D.D_v (20)

or, equivalently,

Atn?
DJ)}':[(l +W)D+D—_;LDD:| [aoﬂ;+‘+ (1 —'90) U;']

with 6, the optimal weighting parameter given by

ol L

212
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The W-scheme belongs to class (P,) with the constants:

C=0, B=—B,=15

(21)
SN O i S s
1= 24 12 T Taar T8 Ty 144

2. N Scheme

This scheme was obtained by Noye [7] in 1990 from a
combination of Lax-Wendroff and backward optimal
schemes (the author, surprisingly, declared that the scheme
was of order 3):

n+1+
M) Deg-@.0 -y (P52
At 2t A8 v} o]
'(12_ 12 )D+D*( 2 )
+(Ah2 A3At2)DD o
12 12 0
R A2 Ar
—(1—2-+ c )DD D_v. (22)
The N scheme corresponds to (P,) with
1 A4
€=0 Bi=-b=p -
LT A L W LT
S T Tt e @)
A__;WF A1 A2
4 024 12r 6
3. M1 Scheme

This scheme and its variant defined below were con-
structed by Manohar, Iyengar, and Krishnaiah [6] in
1988 for parabolic problems with variable coefficients (in
particular, for differential problems in polar coordinates):

n+l+u
(M) D" —(D,D_ ——ADU)(-———E——-—>
13k2 r_l+ 3 + o A’zkz
ALY T o B B LAY,
12 ( 2 )+ 12 P
L WA .
12DDOU [12 TZ]D’D+D_vj'
(24)

581/114/1-5

The M1 scheme corresponds to (P,) with

Ah?
C=-5,
PR L | YR L |
B=-tm B e W
A
A= —Ayj=——— T,
! 22r 72
4, M2 Scheme
Another choice of coefficients made by Manchar et al.
yields
n+i+v
(M2} D,u/—(D,D_~ 2Dy} (—2——)
Azlﬁ "t gt
D g k)
oo (5 )
__’13th (U;+1+1};)
12 ° 2
G L
R AH
- DD, .
[ + 72] D_v} (26)
The M2 scheme corresponds to {P,) with
Ah? A1 AW
C="—, A==+ +5-,
12 T T
ik 1 A%
A= — T 7
T2 12r T2 (27)
B AR 1 AR 1
24 T2 2724 127

Replacing the above sets of constants in the expressions
(13,j), we obtain the truncation errors relative to every
scheme:

PRy AR TE : Atar kY,
Ew*[m 12 ]‘3 [T‘—n—]ax“

AR Y15 Sy
+[80 4]5

A7 K7
+[12 240]6 u+HOD (28)



64 ALAIN RIGAL

RAR P 240
E = — 4 = 5
N [ 12 144}6"H+[80 7 ]ax”

A RPAt R L
+["4—~——1-5——%:|53H+H0D (29)
Atar

}'2 2 4 2
us 22 a4u+[ih——)“" ]aﬁu

2 Ut ST T %
[AT’Q_%_E’%] 3%u+ HOD (30)
Fua= ~ 8 (P20 20 00,
SERT
+(ATI2_£121—;£—5{;%)8211+H0D. (31)

Note that, except for the N scheme, in the expressions
above, e, and ¢, are the only coefficients equal to zero, Thus,
it appears that the choice of 4,, B;, € may be improved.
Now, we give the main results relative to these schemes, i.e.,
the conditions (D), (S), (O) corresponding to each of them.

THEOREM 4. 1. The W scheme satisfies conditions (D)
and {O) for any value of At, h and is stable (conditions (S))
if

as\/g.

2. The N scheme satisfies conditions (D), (S), and (Q) if
ris less than ry, r,, ry, respectively:

(32

1 3\
r1—5(1+;3) (33.1)
r —-—1— (33.2
2= 5 2)
1 3 N2
rg—iz(l-kaa-—;) . (33.3)

3. The M1 scheme satisfies conditions (D), (S), and {O)
if, respectively,

(i)‘ a</3 (34.1)
(i) a<./6 (34.2)
(iii) o —3e—3<0wa<a ~21 (34.3)

4. The M2 scheme satisfies conditions (D} and (S} jfor
any value of At, h and condition (O) if

o’ —20?—3a—3<0e=a<a,~ 14 (35)

The stability resuits of the M1, M2, N schemes agree with
those given by [6,7], except for the stability domain
defined by (41b) in [7] which does not appear in (33).
Actually, this condition (41b) may be expressed as

r>r* with r* > whenh—0

and is therefore not significant. Besides, the asymptotic
behaviour of the above conditions, (32)-(35), will require
our attention.

Comments. 1. Several conditions detailed above are
independent of 41, e.g., conditions (34.1)-(34.3) relative to
the M1 scheme are always satisfied when # tends to zero.
We observe the following paradoxical situation: the
Fourier stability analysis which must give an asymptotic
result—stability yielding convergence of the discrete scheme
following the Lax-Richtmyer theorem [$] -leads to
stability conditions (W and M1 schemes) which are only
significant when # is finite. Such conditions are cruciai for
practical computations (finite values of # and i3 1), but
some anomalies do appear: for instance, considering the M1
scheme, it is a backward diffusive scheme when a>\/§
(conditions {D) non-satisfied) and, therefore, gives numeri-
cal solutions which are quite unstable even if x < \/E (condi-
tions {S) satisfied).

Briefly, il conditions (D), (S), and (Q) are satisfied, we
may expect numerical results which are generally satis-
factory but not necessarily of order (2, 4). Indeed, the above
observations are also valid for the discretization errors
which present some coeflicients that are dependent on ik;
thus these errors may behave like O(h?) or even O{(h).
Another limitation to the efficiency of numerical schemes is
their non-positivity which we discuss below.

2. The preceding observations do not apply to the N
scheme submitted to conditions (33.1)-(33.3) which are of
the same kind as those obtained for second-order schemes
[1]. No direct limitation of the cell Reynolds number o
appears and conditions (33.1)-(33.3) may be interpreted as
conditions on the Courant number u = 2ar; e.g., condition
(S) is then u < 1. Moreover, contrary to (28}, (30}, (31},
the truncation error E, (29) does not present any term
depending on A°. Therefore, among these four schemes, the
N scheme appears to be the best.

Positivity of the FDS

To achieve the analysis, we consider the positivity of the
difference schemes. The matrix formulation

AVn+t 1 BV",
where A and B are tridiagonal matrices,
B=[b_\, by, 0],

A=[a,_,,ao,a1], (36)

leads to two cases being distinguished:
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(i) if matrices 4 and B commute--as matrices relative
to second-order two-level schemes [1], the FDS may then
be interpreted as rational approximation of exp(~z) and
the positivity results from the monotonicity of these
approximations {1, 15]. Among the above FDS, the W
scheme is the only one that is commutative,

(it) if matrices 4 and B do not commulte, the positivity
of the scheme (defined in Section 1) is then certain if both
matrices A" and B are positive. Let us recall that a non-
singular matrix 4 is monotone if 4~ " is positive. No simple
characterization of monotone matrices exists. A simple suf-
ficient condition is that A is a diagonally dominant L-matrix
(DDL matrix), ie,,

a; >0, a;<0 if j#i (L-matrix) (37)
ay2 Y, la;|  (diagonal dominance). (38)
Jwi
In our case, we will impose:
b()?Os blaos b_]?O,
(3%)
ap >0, a, <0, a_, <0, ap>la, |+ la_,|.

The above properties evidently yield sufficient (and fre-
quently too restrictive) conditions. In short, we attempt to
propose realistic positivity conditions for comparison with
numerical experiments. The experimental limits of positivity
are somewhat imprecise because they slightly depend on the
data of the differential problem. The positivity conditions
are detailed below for the four preceding schemes which are
first assumed to verify conditions (D), (8), and (O).

THEOREM §.
interval

The W scheme is positive if r belongs to the

, llS—az
< 6 18+ 6a? |’

Proof. The W scheme may be written

(40)

(-84 QY V" =(T+(1~0) 41 0) V"

with @ =(1+ A%%12) D _D_ —AiDgand 6 =1—1/12r and
is positive if R(z) = (1 — (1 —8)z}/(1 + 6z) is monotone on
R*[1, 15]. (Note that @ is positive when condition (D) is
satisfied ). Thus we prescribe:

» 8>0

e« 1 —{1—8)supi{q,) >0, where [ ¢,] is the diagonal part
of the matrix associated with 0 and we obtain {40).

THEOREM 6. The M1 and M2 schemes are positive if,
respectively, -

15 of

?’<I‘m‘_-l'g——4- (41.1)
15 + 4a*

TN (“12)

Proof. These conditions result from (38) when we take
conditions (D), (8), and (Q) into account, i.¢.,

2 [0,/3L

a0, af

for the M1 scheme

for the M2 scheme.

The positivity results relative to the N scheme are given in
[7] in terms of » and p = 2ar, the Courant number; these
results are rather involved and not quite exact, The coef-
ficients a,, b, are given by '

a_, = (1—6r—4ar?}(2r + 2ar — 4a*r?)
ap=2(12r — (2r —4a?r?)(1 — 6r — 4a°r?))
a, = (1 — 6r — 4a?r*)(2r — 200r — da’r?)

b_ = (1+6r—4x)(2r + 20r + 40*r7)
bo=2(12r — (2r + 4a®r*}1 + 6r — 4a*r%))
by =(1+ 6r—4a2r*)(2r — 2ar + 42°r?).

{42}

We separately examine the positivity of Band 4.

ProrosITION 1. B=[b_,, by, b,] is a positive matrix if’

a—1

r>r¥f=—s
202

(43)

and

with r_;=(3+./9+4a?)/da?

(44)

r<inf{r_,, ro}

and ry, is specified below.

Proof. The conditions r>r} and r <r_, are straight-
forward from the positivity of b, and b_,; b, > 0 yields the
inequality

P (r)=8a*r*—8ar* — 2a’r—6r+5>0 (45)
and we must approximate the first positive root r, of P,{r)
(which is easy to compute for given values of o). The study
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of the family of curves associated with P, gives an estimate
of rg:

45 (24 .13+ 3%
2 [1180 + 70 + (26 + 6a*) /13 + 3a%)

This value corresponds to the intersection between the
r-axis and the straight line joining (0,5} and the first
minimum of P,{r) (ie., when r=r_, = (24 ./13 4 3a?)/6a%).
Moreover, b, > 0 1s equivalent to

(46)

g =

(14 22%r )1 + 6r — 42"y <6 (47)

and 1 + 6r — 4a?r? is a maximum in the interval [0, r _,] for
r=3/4x* Thus with this value in Eq.(47) we obtain a
sufficient condition,

20a® —9

<o a1 9y

(48)

which is obviously significant only when o > 3/2\/5 ~ (.67

ProrosiTioN 2. A=[a_,, ay, a;] is an DDL-matrix if

Py <r< rn’
where
J9+4e2—3 t—a
" S I e L. 49
402 ’ 4 20 (49)
,‘.1\
. . | N
1 ¥3 oy vy a

FIG. 1. M! scheme: a=\/§, ay { =21}, \/3 are the limits given by
conditions (D), (O), and (8), respectively; rp, and 7, _are the theoretical
and experimental positivity limits.

r
Fi3

ag{W)

1

o, 2 VB a

FIG. 2. M2 and W schemes: ug=./6 is the stability limit of the W
scheme; o, ~ 1.4 is the non-oscillation limit of the M2 scheme; r p, and rp,
are the theoretical and experimental positivity limits, respectively.

v 2

FIG. 3. Nscheme:r,, ry, r; are the limits given by conditions (D), (S),
and (O), respectively; rp, is the experimental positivity limit.
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Proof. These conditions result from the negativity of g,
and a_, which is satisfied under the above conditions. A4 is
then diagonally dominant. Note that the inequalities (49)
are never valid if > §.

Conclusion. Both above propositions yield conditions
of quite different consequences. Proposition2 (4 is a
DDL-matrix) gives widely sufficient conditions which may
be very significantly exceeded, while Proposition 1 gives
nearly realistic conditions. This situation is common to
other schemes, but, for M1 and M2 schemes, the conditions
on A are inequalities excluding values of r near zero and
therefore are not important.

On Figs. 1-3 we summarize the resuits relative to the four
preceding schemes. The common observation is that they
are only efficient for weak or moderate values of «; it is not
possible to consider values of ¢ greater than about 1.5 (M1
or M2 scheme) or 2.5 (W or N scheme). However, we dis-
tinguish the properties (D), (S), and (O) which must be
verified so as not to destroy the numerical solutions and the
positivity property which does not prevent the computatton
of acceptable numerical solutions. Therefore, the N scheme
is the only one which does not present a barrier value for o
and appears as the most efficient among these four schemes.

There obviously exists an infinity of possible choices of
the constants 4;, B,, C, such that the truncation error will
be of order (2, 4). Different possibilities will be discussed in
the following paragraph.

4. TOWARDS AN OPTIMAL SCHEME

The discussion is limited to three situations corre-
sponding to different approaches of the discretization error
E (41, h) given by (11}

{i) we eliminate the only components of E, of order
strictly lower than 2 in time and 4 in space; thus, we define
the R1? scheme;

(ii} we choose the A,, B, so as to cancel the four coef-
ficients (e;) given by (13.1)-(13.4} in E, and we obtain the
R2 scheme;

(ii1) we consider the class of R3 schemes defined by a
choice of constants which cancel e,, e,, e, in E, ; in this class
{containing the N and R2 schemes) we seek an optimal
scheme of order (2,4) which verifies the fundamental
properties and leads to minimal restrictions on grid steps.

Preliminary Remark. In the general formulation (10} of
(P,) we introduced the constant C because the M1, M2
schemes given by Manohar et al. [6] correspond to values
of C different from zero. In fact, the choice of C {provided
that 1 + C> 0} has no consequences on the basic propertics
of the schemes. Therefore, the following schemes will be
studied with C=0 (which makes the different analyses

easier} and we might vertly, sometimes with difficulty, that
conditions (D), (S), and (O) are independent of C.

However, the amplitude of the discretization error
depends on the choice of € (see Eqs. (13.1)}-(13.6}). The
numerical tests (Section 5) show that this dependence is not
very close for transient-state computations, but if we con-
sider the steady-state problem associated with (P,) {(as we
introduced condition (O)), it appears from Eq. (10} that the
approach of steady-state solutions will be satisfactory only
if Cis relatively near A, + A,. If not, the diffusion of the dis-
crete problem will be very different from that of the differen-
tial problem; this difficulty is particulary present in R3
schemes (and confirmed by numerical experiments ) because
a consequence of the improvement of the properties of the
FDS is an increase of the artificial viscoscity.

R1 ScueMe. The constants 4;, B; satisfying
B+ B,=0
A1+A2+22AIBZ=0
2 {50}

h
At (A2+B2)+€'=0

2

h
(1+A,+A2)E+A2At=0

eliminate the only terms depending on Ar and 4% in
E (4t h) (11). From (50} we deduce that

1 (202 +3)
By=— ————, P
2T 4r(d? 4 3) 27 12r(e? + 3)
(51}
A =—1—-A4,(14+2r), B,=-—8,
and E, becomes
At 4
Eg = (1+468,) 3 u
12
A7 *h? At
_[/12—1"—(1+2Al+431)+’1 = (1+281}]6iu
Adr A
2
o A’(3+2A2+432)]a§u
24
A8 nrAtA, hPAf)
—[T(1+6A2)+T+—2-Z—]axu+H0D.

By applying conditions (15), (17), (19), we obtain
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THEOREM 7.
if, respectively,

The R 1 scheme Is stable and non-oscillatory

() r<r=st-
rsry=z+—

6 « (52)
(il) a<a,

and satisfies conditions (D) for any 4t, h.

Proof. Some algebraic calculus yields conditions (52),
where x, given by (35) is the positive root of

o — 202+ 3x—3=0.

This scheme does not present any improvement in
comparison with the schemes analyzed in Section 3. For
completeness, we give the positivity results deduced from
the matrix formulation (35) with the g;, b, given by (18).

ProposITION 1. B is positive if

4o+ 15

T T %)

rsr

Proof. The positivity of b, yields (53}, &_, is always
positive, and b, is positive if

202 — 30 +3

< v —_—
o 1+ﬁ or 1y —2

r<ry,=

However, in the interval of usual values of «, we have
r, < r, and the positivity condition of B is (53).

PROPOSITION 2. A is an DDL-matrix if

20 —3a+3

6(1—-_a)(a_2+3)' (54)

<1 and r>r¥=

Proof. aq is always positive, a, i3 negative if (54) is
satisfied, and ¢ _, is negative if

o 243043
¥t
6(a + 1)(a?+3)

r** is smaller than r* when o < 1; then the only conditions
are given by (54). |

Figure 4 summarizes these results and clearly outlines
that, like the schemes analyzed in Section 3, the R1 scheme
does not work efficiently for larger values of « (i.e., greater
than about 1.5).

R2 ScueME. The constants A;, B; are chosen s0 as to

r

0.5

%u

1 Q, 2 5

FIG. 4. RI scheme: r,, stability limit (52); rp, , experimental positivity

limits; &t = &, { =~ 1.4} is the limit given by condition (O).

cancel the four coefficients {e;},_, 4 in E,. Taking C equal
to zero, we obtain

Adar 1 A4
YIRERUERCLIN I . (55)
12 6r p p 2
p Adt L g giar
Y12 Ter pop 27
where
24248 —n? y 12h2At+i“At3
=" - F= 12 12

The truncation error is therefore reduced to

ER2=656§H+366§H+H0D.

With the above constants, analysis of the conditions (D),
(S), and (O) yields the following.

ThHeoreM 8. (i) The R2 scheme satisfies conditions (D)
if
as\/g and relrg,rql (56)
cx;\/g and relry,rals

where rz = \/5/2&2, ray,=+/0* —3/20%
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(ii) The R2 scheme satisfies conditions (S) if

a<./6

and relrg, rg,)

- 3.3
\/6 Lo E/_ and re [0, "53] Y [rdz’ rsz:l (57)
agsﬁ and Py,

48]

where

|:2cx2 -9+ /81— lZaz]‘/z
r52,3= *

St
(iii} The R2 scheme satisfies condition (O} if

x</6
aé\/g

and relry, rel

58
re[ro, ral (38)

and

with
1 {a®—3a+377
fo=—s| ———— 1 .
07 242 1+
Proof. (i) Condition (D). 1+ 4,4+ A4,>0 yiclds the
inequality

12 — 16a'r? -
12 — 4o + 16a%?

and we casily deduce conditions {56).
(ii) Condition (S). 2r(A4, — A,) < 1 yields the inequality

1605 + (360> — 8’y + o> — 6
dor? —a? +3

<0 {59)

and we must discuss the signs of both polynomials
appearing in (59):
— the numerator has two positive roots,

B [2&2 —9+./81— 120(2]”2

r. =
8a*

523

when ¢ < 3 \/5/2 and no real roots when o > 3 \/5/2,
— the denominator is positive when o < \/5 or when

az/3and r>r = /o’ —3/2.

Therefore we conclude with the stability intervals (57).

(iii) Condition (0). 14+4,+4,>«
inequality

yields the

Ja 4oy r?—a+3c—3

4a*r? —a®+ 3 <0

with the same denominator as in (59). The numerator is

positive if
. 1 az3_3.::¢~+-3Tf2
Tore= g l+a

and we deduce the non-oscillation intervals (58). ||

In Fig. 5 we collect the results of Theorem 8 and observe
the very limited range of useful values of r when « is about
2 or more; when g = \/3, the only acceptable value of r is
r= \/3-/ 12 ~0.144, and for greater values of a, the useful
interval of r is very sharp, e.g.,

re[0.127,0.136)
re [0.087, 00941,

a=73,

a=25,

The complexity of the expressions of 4, B, makes
analysis of the positivity very difficult. Insofar as the useful
interval of r is about 0.01 wide for values of « greater than 2,
it does not appear important to consider the positivity of the
scheme. We may only specify that the above domains
(Fig. 5) are very slightly modified for positivity reasons.

Thus, the R2 scheme, which presents the best reduction of
the discretization error, does not yield satisfactory numeri-
cal solutions (like schemes previously analyzed ) for sirongly
convective problems.

R3 ScueMe. The utilization of the R2 scheme is
extremely sharp for strongly convective problems. There-
fore, we relax one condition and consider the class of R3
schemes defined by

e;=ey=e;=0

Ep,= 0417 + h*);

(60}
(61)

I
HREEE

1

I

]

]

!

4
A

//pi

T

|

|
EARERENNENE

¢ [
-
e NS m
a.t }' .o “‘j:tl::j
I
¥ Az A 5 a

FIG. 5. The regions of the (a,r) plane in which the R2 scheme is
unstable (horizontal shading} and does not satisfy condition (ID) (vertical
shading); r, is given by condition (O) (58).
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ie., A;, B, must be such that ¢,, e,, e;, and the terms of
order less than (2, 4) in e, vanish—the N and R2 schemes
belong to this class.

As previously considered, we take C =0 and, prescribing
(60) we express 4,, A,, B, as a function of B,:

B =-5
Atdr 1 i A
Az——Tf'—g;—Bz(l-F ) ) (62)
Aar 1 At At
=24 1-- :
Ai="3 +6r+32( 2 )
Moreover, B, must be chosen so as to verify (61), i.e.,
W A2Ar* B, ., 6 3
e4—ﬁ———6——+ﬁ[—i h At 4+ 1241 4+ A% Ar°)
must be of order (2, 4).
In terms of &,, conditions (D), (8§}, (O) become
D B, <—5 63
(D)  Bi<yz (63)
1—40%r?
By <— 64
(§)  By<—rs (64)
©) B,< Z? (65)
17 4o

Remark. Inthe N scheme, B, = — 1/12r 4+ A* At/12 and,
in the R2 scheme, B, is such that ¢, =0. None of these
choices corresponds to values of B, satisfying the three
above inequalities {63 )-{65).

The main objective is evidently to define B, so as to
satisfy, if possible, conditions (63)-(65). We propose two
possible choices for B, ; we examine the conditions (D)), (S),
and (O) and we consider the positivity of the schemes so
defined.

R3A Scueme. The simplest choice for 8, consists of
B,=—1/12r (66}
which eliminates in e, the only terms depending on 4¢ and

k2. The coeflicient of the leading term in the discretization
error is then

12A12+/12h‘ AR A2
T 6 144 144

£y =

For the above value of B,, the inequalities (63)-(65) yield

THEOREM 9. The R3A scheme is stable if

r<lja /2

and satisfies the conditions (D) and {O) for any value
of 4t, h.

Replacing B, in expressions (62) of 4,, 4,, we may write
the coefficients of the difference scheme as

(67)

—§+r 202 a_zr
9= 3 3
1 r oz+otr otzr.{-otzr2
g =—————d——— b —
Y12 2 1272 6 3
1 r+oe ar a2r+a2r2
12 2712 2 6 3
(68}
b 5 2% a’r
°T6 3 3
b 14_54_«::2;"2 ar ar a
Y1272 3 6 2 12
S S L -
127273 6 2012
From the usual matrix formulation of the scheme
AV"+I=BV",
we deduce
TueoreM 10. (i) B is a positive matrix if
4260 +9—(a+3
r<r1=\/a + oc4:2 (2*+3) (69)

and, when o> 1, if

[a* — 26+ 110% — 180 + 972 — [ — 3u + 3]

F>r,=
2 4&2

(70)

(il) A is a DDL-matrix if the above conditions on B are
satisfied.
Proof. b_, is always positive and the positivity of by, 5,
depends on the quadratic polynomial conditions,
4a’r’ + 222+ 6)r—5<0
da’r? 4+ 20 — 6o+ 6)r+1—a>0

which yield conditions (69}<{70) onr. If we write the
quadratic inequalities corresponding to coefficients a,, we
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observe that they yield conditions which are less restrictive
than (69-(70). §

We must remark that, if we compare r, and r,, B is
theoretically never positive when a>3 (but, the R3A
scheme is, in practice, positive for precise values of » when
a=10).

Figure 6 summarizes the results relative to the R3A
scheme; the stability condition is not strongly restrictive
and the practical limitations due to positivity allow the
scheme to be utilized over a reasonable range of values of «
(approximately [0;4]). Thus, we observe appreciable
progress, in comparison with the schemes previously
analyzed. Finally, we attempt to propose an optimai
scheme, considering a value of B, such that the three
inequalities (63)-(65) are satisfied.

R3B ScHEME. The value of B, which defines this scheme
is

1 At ae
- 1
b= (1)
and from (62) we have
v ATHE At 4P
Bi==by A=ttt
Aom 1 AR At ar
R T PR YR

THEOREM 11. The R3IB scheme defined above satisfies

FIG. 6. R3A scheme: r, stability limit given by {67); rp and rp , lower
and upper experimental positivity limits.

conditions (D), (8), and (O) for any value of A1, h and the
leading terms of its discretization error are given by

PEEREIY WA A
— _ a4 s
Eng, [ 2 144] x +[80 3 ]‘3

4t WAt n
+[—————~— h ]66u+HOD

This scheme satisfies the fundamental properties; we must
examine the conditions of positivity based on the coef-

ficients:
5 [a? 4ot
LY AT ) PR
bo 6 (3 + )T 3 r

b—-l a+r ar 3 o_cir_z. 2utr?
SR TR It T3 T3

b 1 1o« +r+otr+rx r+a3r2+2fx4r3
T2 276 3 3
2 4.3 (72)
3L, A
a0—6+r 3 3
1 a?r 2a%7 2t
“45‘5)““‘)"‘——3—*7
1 (1+2) @ty 203 N ar?
4-1=\12 2 6 3 3

This analysis, which requires a discussion about several
cubic polynomials, does not yield analytical conditions on r
and «. This drawback is not really crucial because;

(i) for given values of «, we may easily obtain com-
puted conditions of positivity,

(i) the study of the preceding FDS showed the signifi-
cant differences between theoretical and effective conditions
of positivity.

We give some partial results in the following proposition:

ProrosITION.  If B is a positive matrix, the mesh ratio r
satisfies

O 24 —do?—3
<reP¥ et o3 (73)
4

x—1
2u?

Proof. b_, is always positive, the positivity of b, and b,
corresponds to

8a'r + (222 4+6)r—5<0 (74.1)
Satr? ~da’r? + 2r(0” —3x+3)+ (1 —a) =0, (74.2)
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which are simultaneously verified only if
4o’r? + Gar + a—6<0; (75)

(75) is valid if

<,/9+24oc-4a2—3

<
4n? ’

which is only possible if @ <6,
Moreover, (74.2) is equivalent to

(1 — a4+ 20°r)(1 + 6r + 40’r?) > 160°r%;
therefore, we must necessarily prescribe

oa—1

l—a+2a%r>0<=r> .
+ 2a°r <7 %

Remarks. 1. From (74.1) we deduce a simple sufficient
positivity condition for by,

3

PS4 6 (7€)

r<r

2, The study of the entries a; (so that 4 15 an DDL-
matrix) does not provide constructive information.

In Fig. 7 we represent the necessary conditions (73), the
sufficient condition (76), and the experimental positivity
domain. We note that, even for relatively large values of «,
the possible range of values is not too restricted. From this
observation, combined with the properties of the scheme
(Theorem 11}, we may consider the R3B scheme as theareti-
cally optimal among all the schemes previcusly analyzed.

r

1

T

‘bg

FIG. 7. R3B scheme: 7, positivity limit (76) {a sufficient condition);
ry: lower positivity limit (73) (a necessary condition); rp, and rp,, lower
and upper experimental positivity limits.

5. NUMERICAL EXAMPLES

All the schemes analyzed in the preceding sections are
formally of order (2, 4). Until now, we have neglected the
effective accuracy of the computed numerical solutions. So
we propose some numerical tests so as to compare the
behaviour of solutions produced by the different fourth-
order schemes in reference to the solutions obtained with
the most efficient second-order schemes [ 17].

We first consider the advection-diffusion of a Gaussian
pulse centred at x=0.2,

uo(x) = exp[ — [x—0.2]%]. (77)
The solution of (#2) on [0, 1] x [0, T[ is given by
—02—4n?
(s )= gl )=~ oxp -7 0w

provided that the boundary conditions are coherent with
(78), ie.,

u(0,1)=g(0, 1)
u(l, )= g(1, 1).

This example amply satisfies regularity hypotheses and
therefore allows precise tests to be made on the discretiza-
tion error. Noye ufilized this problem in [7] and like him
we consider a time interval {0, 7], such that the pulse is
centred at x = 0.8 at time 7. We must remark that these tests
require a few time steps and do not exactly reflect the
asymptotic properties of the schemes (stability, oscillation)
—some numerical results in Table 1 are obtained with
moderately unstable schemes.

For a wide range of values of «, Table I gives the maxi-
mum absolute error,

e=max |[v) —u(x,, T,
S

produced by each fourth-order scheme, in comparison with
three efficient second-order schemes:

(i) The WZ scheme, a three-level weighted scheme due
to Ziamal [2, 16, 17],

(B+3) 07! —200] +(0—3) ]!
=At A,[fo} (1402807 +(B—8) 07~ ']
(79)

with f=(1+6)*4and 4,=D, D _ — iDo;
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TABLE1
Cell Reynolds
aumber « 0.2 Q.5 1.5 25 4 10
Time interval
T 0.075 0.03 0.01 0.006 0.00375 0.0015
M| scheme r 2 1.2 0.5 Unstable 0.1 0.04
£ 0.171(-3) 0398 (-3) 0.682 (-3} 0.287 (-2} 0.461(—3)
M2 scheme r 2 12 .5 02 01 004
I3 0171 (-3) 0393 (-3) 0.669 (—3) 0301{-3) 0.198 (-3} 0.261(-3)
W scheme r 2 12 0.5 D2 Unstable Unstable
£ 0.168 (—3) 0377 (-3) 0468 (-3} 0.294 (—3)
N scheme r 2 12 03 0.2 0.1 004
P 0470 (—4) 0812(—4) 0.258 (~4) 0.191 (—4) 0.715(—6) 0.147 (—4)
R1 scheme r 2 12 0.5 02 0.1 004
e 0.149 (—3) 0278 (=3) 0317(-3) 0637 (—4) 0410 (~4) 0.165 (—3)
R2 scheme r 2 12 0.25 0.14 0.1 0.04
£ 0270 (~4) 0.802 (—4) 0.173(=5) 0.536 (—6) 0.834 (~6) 0477 (—6)
R3A scheme r 2 12 Qs 02 0.1 004
[3 (101 (—3) 0.162(-3) 0.122¢(-3) 0287(-4) 0.554(-—-5) 0403 (—4)
R3B scheme r 2 1.2 0.5 02 0.1 0.04
£ 0.155(-3) 0.24G6 (-3} 0.214(-3) 0411 ¢(—4) 0966 (~-35) 0557 (—4)
WZ scheme r 2 1.2 05 02 0.1 0.04
: 0459 (—3) 0936(~3) 0.145{-2) 0I102{-1 0107 (-2 0.130 (-2}
MFTCS scheme  r 04 04 025 0.15 0.1 0.04
H 0370 (-3) 0.648 (—-3) 0.561 (—3) 0263(—3) 0.142(-3) 0.693 (-4}
Samarskii scheme r 04 0.4 025 0.15 0.1 0.04
£ 0449(-3) 0.168 (—2) 0436 (—~2) 0.112(-2) 0.142 (-3) 0323(-2)

(i1) The MFTCS scheme (1,7,13, 187 which uses a
Lax—Wendrofl correction of the artificial viscosity,

n+l

; [1 +A:[(1 +/12%)D+D_ —woﬂ vy (80)

(iti) the Samarskit [ 1, 19] explicit scheme, an upstream
scheme with correction of the artificial viscosity,

v

vt i =[1+4t[(1+a)' D, D_—AD_]]v7. (81)

These schemes are of order (2, 2) (WZ scheme} and (1, 2)
{MFTCS and Samarskii schemes).

The numerical experiments used a fixed space step
£=005 for different values of the convection velocity A:
A=8, 20, 60, 100, 160, 400, which correspond to the
following values of the cell Reynolds number «: o = 0.2, 0.5,
1.5, 2.5, 4, 10.

For a valid comparison of the accuracy of the FDS, we

utilized the same mesh ratio r as much as possible in the
intervals defined in Sections 3 and 4. Table I completes the
main results given in the previous sections and agrees with
the discretization errors relative to each scheme:

the R2 scheme is by far the most accurate,
— the R3 schemes give very satisfactory resuits,

the other schemes which retain more components in
the truncation error are less accurate.

We must recall that the working area of the R2 scheme is
very sharp when « is relatively large (the MFTCS scheme
which yields good numerical results presents the same
behaviour [1]).

The propagation of the Gaussian pulse from x=02
(t=0)to x=038 (= T)is well reproduced by fourth-order
schemes: the relative error on the peak height is about
2% 10~* for all the schemes in TableI, except for the
Samarskii scheme which presents a 0.3 % error (for infor-
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TABLE I
R3 scheme WZ scheme MFTCS scheme

h=0.1

g, 01907 (-2) 01457 (-1) 04200 (—2)
a=08
h=005 p, 12.58 5.77 342
a=04 g, 0.1515(-3) 02523(-2) 01228 (-2)
h=0025 p, 21.86 377 298
a=02 g, 0.6933(-5) 0.6691 (—~3) 04122 (-3
h=01

£, 02006(=3) 0.J100 (—1) 0.7461 {—3)
=10
h=0053 p, 8.65 8 1.92
a=35 & 02331(—4) 0.2884 (—2) 0.3887(-3)
h=0025 p, 563 in 292
a=25 g, 04144(-5) 09286 (—3) 0.1333(-3)

mation, this error is about +2% for the explicit centred
scheme and — 2% for the basic upstream scheme).

Insofar as we consider moderate or large vaiues of «, the
effective order of the discretization error is dependent on the
range of values ofa. In Table II we illustrate the error
decrease for three schemes:

« the WZ scheme of order (2, 2)

+ the MFTCS scheme of order (1, 2)

« an R3 scheme of order (2, 4).

We consider two situations;
« 1=16, h=0.1, 005, 0,025, ie, x=08,04,02,
+ A=200, A=0.1,0.05 0025, ie, x=10, §, 2.5.

We report the [, errors,

172
&= [Z [0 — u(x;, T)Iz] .
J
and the decrease factors,

&,(h)

_ ex(h/2)
o m2)y

ERPXTT7YY

We observe that the error decreases roughly agree with
the order of the schemes when « < 1. On the other hand, the
effective order of the schemes is significantly lower than the
theoretical order when a > 1; the order of the R3 scheme is
hardly over 2 and that of the MFTCS scheme is about 1.

For completeness, we carried out some numerical
experiments with the following discontinuous data:

(i) initial condition u(x, 0)=11in 10, 1]

(ii) boundary conditions u(0, f)=0 and w(1, t)=1 for ¢
in [0, T[.

A formal analytical solution of (#) with these data may be
obtained but it does not provide readily available results for
large values of A. Thus, the comparisons were made with an
“exact” solution obtained with a very fine mesh (e.g,
h=0.002).

In comparison with the previous example, the accuracy of
the numerical results is significantly restricted, in particular,
for large values of o. The absence of smoothness of the
data notably reduces the effective convergence order of
the schemes and, consequently, the fourth-order schemes,
which require the existence of higher order derivatives,
become hardly more accurate than second-order schemes
(the pointwise error is approximately reduced by a factor
two).

These experiments outline the characteristics of the
different properties analyzed in Sections 3 and 4:

-— if conditions (D) are not satisfied, the FDS cannot
yield acceptable numerical solutions;

— if conditions (8) and/or (O) are not satisfied, we may
frequently obtain numerical solutions during a few time
steps but the implementation of FDS over a rather large
time interval gives

« unbounded numerical solutions (instability)

« strongly oscillatory solutions (if condition (O) is not
verified).

On the other hand, the non-positivity of an FDS, which is
inconsistent with the differential problem {#?), does not
exclude the obtaining of satisfactory numerical results.
Figures 8-10 summarize these observations and outline
that the choice of a difference scheme for strongly convective
problems requires careful investigation: '

1

FIG. 8. Exact profile (1) and approximate profiles given by the
Samarskii (2), R3B (dotted line) and M2 (broken line) schemes for A =400,
r=0001.
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FIG. 9. Exact profile (1) and approximate profiles given by the
Samarskii (2), R3B (dotted line) and M2 (broken line) schemes for 2 =400,
§=0.002.

— properties analyzed in Sections 3 and 4,

— characteristics of (27); smoothness of the solutions,
research of transient-state solutions, or quasi-steady-state
solutions, etc.

We plotted the numerical solutions obtained with three
representative schemes: M2, R3B, and Samarskii schemes,
for a = 10 over a time interval [ 0; 0.006]; for a large convec-
tion velocity {4 =400), this interval allows steady-state
solutions to be approached,

The M2 scheme yields osciltatory numerical solutions:

1. during the transient state because the scheme is not
positive;

2. when approaching the steady-state solutions because
condition () is not satisfied.

FIG. 10. Exact profile (1) and approximate profiles given by the
Samarskii (2), R3B (3) with C' =0, R3B (dotted line) with C =60, and M2
{broken line) schemes for A =400, t = 0006,

It should be noted that in {1) the steep velocity profile is
correctly approximated: the pointwise error is about 107!
(as opposed to 2x10~! for many other schemes). The
osciflatory behaviour of the scheme progressively destroys
the numerical solutions (situation 2)).

The R3B scheme (like the R3A, R2, and N schemes)
yields acceptable transient-state numerical solutions if the
step ratio r is conveniently chosen (this choice is extremely
sharp for the R2 scheme). As specified in the preliminary
remark of Section 4, the choice of constant € becomes cru-
cial if one wants to compute virtually steady-state solutions.
The solution obtained for ¢ = 0.006 presents a great amount
of numerical diffusion when C=0 and we also give in
Fig. 10 the numerical solution computed with C~ 4, + 4,
(C =060 in this example); the influence of C is very limited
during the transient state and extremely important in
steady-state solutions.

It is perhaps necessary to outline that the absence of
oscillations does not absolutely guarantee the accuracy of
the numerical solutions.

The Samarskii second-order explicit scheme is not very
accurate but it works conveniently during the time scale
considered in this example; the propagation of the velocity
profile (¢z=0001 and 0.002) and the boundary layer
(t=0.006) are correctly approximated.

This numerical test corresponds to quite a difficult situa-
tion: discontinuous data and large cell Reynolds number.
On the basis of the theoretical results given in Sections 3
and 4, we may obtain accurate numerical solutions for
lower values of a.

6. CONCLUSION

We produced an extensive analysis of several fourth-
order schemes in a general framework, incorporating some
schemes already proposed by different authors [6-87 We
assigned to these schemes the basic conditions necessary to
obtain numerical solutions; 1.e., we only considered

— non-anti-diffusive schemes + conditions (D)
— stable schemes «+ conditions (S}
— non-oscillatory schemes «» condition (Q).

Moreover, we analyzed the positivity of all the FDS.
These schemes being generally non-commutative, we oniy
obtained sufficient (but frequently too restrictive} condi-
tions which need to be completed by numerical tests of the
positivity. This evaluation gives conditions under which an
FDS (which satisfies conditions (D), (8}, and (O)) yields
satisfactory numerical results.

The'results and the discussion essentially focus on the cell
Reynolds number o, because our main objective is to obtain
efficient numerical solutions for strongly convective
problems.
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The main conclusions of this work are the following:

(1) The fourth-order schemes are very suitable for
differential problems where the diffusion phenomenon is not
negligible, ie., yielding discrete problems where o is less
than or hardly over unity.

(2) The properties of the FDS may differ greatly (even
for schemes which are constructed in the same way, e.g.,
schemes M1 and M2), thus a careful study of each FDS is
necessary.

(3) Although they are implicit, these FDSs always
present an acceptable maximum mesh ratio (when « is
relatively large) when one of the basic properties is lacking.
This maximum mesh ratio behaves like « ~ . Obviously, the
reason which yields the leading restriction on r is important;
a stability limit is an effective barrier, whereas positivity
conditions are much less restraining and depend slightly on
the data of the differential problem.

(4) Theoretical analysis states that the N scheme
(among schemes already proposed) and the R3 schemes
{proposed in the present paper) offer the best compromise
and are efficient for values of & >~ 5.

(5) For strongly convective problems (4 3 1), theoreti-
cal results and numerical experiments must be exhaustively
examined; the actual order of accuracy is less than 4 and
different kinds of osciliation may spoil the results,

In this case, some explicit second-order schemes (e.g.,
MFTCS and Samarskii schemes thoroughly analyzedin[1])
may yield numerical results that are almost as satisfactory
{(and less costly).

Beyond the specific items, one important point must be
mentioned. All these FDS may be written for variable coef-
ficient differential problems {e.g., M1 and M2 schemes in
[6]) but such a formulation would considerably lengthen
the paper. The basic properties are clearly valid for the
associated frozen coefficient problems and may be
generalized for sufficiently smooth coefficients. The main
difficuity is the extension of stability properties. Kreiss [20]
gave the conditions which must be satisfied by (#°) and (P,,)
for the transition from frozen coefficient problems to
variable coefficient problems.

Briefly, if the coefficients are sufficiently smooth, the
properties of the FDS will be maintained (the quantitative
results will be obviously less precise). On the other hand, if
we consider quasilinear problems (4 is replaced by the
unknown function u}, these fourth-order schemes present
important algorithmic (and also theoretical) difficulties; at
every time step, we have to solve a non-linear system, and,
if we linearize it, the order of accuracy is then less than 4.

Thus, these schemes are not suitable for quasi-linear
prolems and a better approach is to consider specific explicit
second-order schemes (see 5°) in this section).

The next objective is the analysis of fourth-order schemes
for muitidimensional problems. Seme 2D or 3D fourth-
order schemes have been proposed [6, 21, e.g.]; the nine-
point fourth-order schemes applied to 2D elliptic problems
are well known and must support fourth-order schemes
associated with ().

Except for schemes which are factorized into 1D schemes,
the analysis of the properties of the FDS presents important
technical difficulties (see Rigal [22] for a nine-point second-
order scheme). Although a general approach (extension of
this paper) does not seem to be feasable as yet, we are
currently considering an exhaustive analysis of some 2D
schemes. :
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